
1 / 90

Performance Tracing & Profiling

Holger Pirk

Slides as of 14/01/22 11:57:44



3 / 90

Recall:
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The Optimization Loop

New Feature Evaluate
Performance

Identify
Optimization
Opportunity

Done

No more 
Opportunities?

Redesign

Optimize

Performance
insufficient?

Performance
sufficient?

Opportunities
Available?
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So, how do we identify optimization opportunities?
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How to identify optimization opportunities

• We identify the hot path (the code that takes the most time)
• We identify the bottleneck

• in terms of CPU, Memory, Network, . . .

• Both are functions of the system behavior
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So, how do we describe system behavior?
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What are events?

• Definition: Any change of the system state
• Usually restricted to a certain granularity

• Simple/atomic events
• sent package, executed instruction, loaded address from memory
• clock has ticked

• Complex events
• cache line evicted from L1 to L2 cache, instruction aborted due to

misspeculation

• Events have an optional payload
• An event has an accuracy: the degree to which its value represents
reality



10 / 90

What can you do with events?

Where they come from
• Event Sources are have two components

• The generator observes the changes to the system state
• Usually online, i.e., part of the runtime environment/system

• The consumer processes the events
• Can be offline or online

Where they go
• Tracing
• Profiling
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Trace

• Definition: A complete log of every state the system has ever been in
(in the period of interest)
• Comprised of events
• Events are ordered (usually totally ordered)

• Accuracy is "inherited" from the vents
• Event collection overhead may be high
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Example: Call stack tracing
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Call stack tracing

A typical call stack

Address
0x231fa90
0x7828b72
0x8913ee1

• So, what does a stack look like in reality?
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A call stack

Illustration

Return Address

Saved EBP

Return Address

Variables & Stuff

Saved EBP

Return Address

Saved EBP

Variables & Stuff

Variables & Stuff
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Call stack tracing

Problems
• Recording the entire call stack is quite expensive

• The stack needs to be walked, pointers need chasing
• Call stacks can be deep
• All frame pointers have to be written to memory

• In particular for small/cheap functions, call stack processing can be
way more expensive than the function itself
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We call this problem. . .
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Perturbation

Definition: Perturbation
The degree to which the performance of a system
changes when it is being analyzed.

• Perturbation negatively affects accuracy if it is non-deterministic
• A bit like quantum theory

• You influence the state of the system just by looking at it
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How do we reduce perturbation?
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How to reduce perturbation

• We reduce fidelity
• Fidelity (Oxford Dictionary): the degree of exactness with which
something is copied or reproduced

• Perfect fidelity, i.e., every event is recorded
• Reduced fidelity, i.e., not every event is recorded
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How?
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Sampling

• Idea: do not collect all events to reduce perturbation
• Option 1: Sample in regular intervals
• Option 2: Sample in random intervals
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Example: Call stack sampling

• Idea: Skip some events
• there is a chance you will not sample a function
• Fortunately, more expensive functions will be sampled more often

• But:
• good performance
• even more important: less perturbation
• fidelity can be traded against performance/fidelity
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What is an interval?
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Sampling Intervals

• The distance of two samples being taken
• Obviously, interval size 1 makes sampling equal to event-tracing

• Two options for specification: time-based and event-based
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Time-based Intervals

• Idea: set a (hardware) recurrant timer and sample whenever it runs out
• We use CPU reference cycles as a proxy metric
• Inaccurate, non-deterministic and noisy (computer clocks are poorly
defined)
• Clock rate varies, clocks may not be exactly synchronized among
CPUs, etc.

• Easy to interpret (since time is inversely proportional to performance)
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Event-based Intervals

• Generalization of Time-based intervals (since computer time is
discrete)

• Define an interval in terms of the occurence of an event
• Example: sample every fifth function call
• Accurate, deterministic semantics and low noise
• Tricky to interpret (in the end, we are interested in time)
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Quantization errors

• Interval resolution is limited (usually to single clock cycles but
sometimes more)

• Time is (practically) continuous
• This introduces "quantization errors/biases"

• E.g., costs being attributed to the wrong state
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Here is an interesting instance of event-based intervals:
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Indirect Tracing

• Idea: trace events that dominate others
• Think of it as intervals defined by the execution flow
• For example, control-flow instructions (if, else, for, while) dominate
non-control-flow instructions

• can be used to reduce overhead
• Fidelity and accuracy depends on the event and the indirection
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Wrapup: Tracing

• Tracing collects (subsets of) events
• Perturbation is a problem but can be worked around
• But: Analyzing traces is extremely tedious

• Lots of data, little structure, lots of cognitive overhead
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The solution:
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Profiling

Definition: Profile
An outline of something, especially a person’s face, as seen from one side.
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Profiling

A profile
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Profiling

Definition: Profile
A graphical or other representation of information relating to particular
characteristics of something, recorded in quantified form

In our context
A characterization of a system in terms of the resources it spends in certain
states.
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Profile

• An aggregate over the events of a specific metric
• This can be a global aggregate

• Total cache misses, total CPU cycles
• Or broken down by some other event

• Cycles per instruction (CPI), cache misses by line of code

• Caution: Information is lost
• Why?

• Post-mortem for ease of interpretation
• Realtime to reduce perturbation (assuming aggregation is cheaper than
dumping)
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Flame Graphs

Flame GraphReset Zoom Search
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Flame Graphs

• X-axis shows the stack profile population, sorted alphabetically (not by
time),

• Y-axis shows stack depth
• Each rectangle represents a stack frame
• Width of a box is preoportional to the number of collected samples
• Colors are usually not significant
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Okay, now that we know what to do with events. . .
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. . . let us talk about specific ways to collect events
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Requirements for event sources

• Detailed
• As much information as we need

• Accurate
• The measurements should closely describe the real-world

• Little perturbation
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Where to get events?

• Software
• Library: Manual Instrumentation/Logging
• Compiler: Automatic Instrumentation
• OS: Kernel Counters

• Hardware:
• Performance counter

• Emulator:
• a funky hybrid, minimal perturbation but usually not scalable
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Instrumentation

• Augmenting program with event logging code
• Advantages

• No need for any hardware support
• very flexible

• Disadvantages
• Overhead is high
• Perturbation is high
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Instrumentation

• Three approaches
• Manual Instrumentation
• Automatic source-level instrumentation
• Automatic binary instrumentation

• Static (compile-time) or
• Dynamic (runtime)
• As usual, there are hybrids
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Manual

• basically printf logging (or using a logging library)
• Advantages

• Fine control over instrumentation
• Needs no support from hardware or compiler

• Disadvantages
• high overhead for implementation & runtime
• usually disabled for release build

• needs recompilation for selective enabling
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Automatic

• Usually compiler-supported
• Source-to-source rewriting is possible
• Disadvantages

• Less control
• Need for compiler support

• Advantages
• Let’s discuss this!
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Binary Instrumentation

• Static
• No magic, simple, portable
• Instrumentation overhead can be assessed from binary

• Dynamic
• No recompilation
• Can be performed on running process
• Works with JiT-compiled code
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• http://llvm.org/docs/XRay.html

http://llvm.org/docs/XRay.html
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LLVM-XRay

curl --compressed https://www.gutenberg.org/cache/epub/2229/pg2229.txt | iconv -c -f UTF8 -t
ASCII | tr -d '\r' > faust.txt↪→

for i in {1..1000}; do cat faust.txt >> faust1000.txt; done
clang++ -g -O0 -fxray-instrument -fxray-instruction-threshold=1 ~/pegrep.cpp
XRAY_OPTIONS="patch_premain=true xray_mode=xray-basic verbosity=1" ./a.out faust1000.txt

llvm-xray convert -f yaml -symbolize -instr_map ./a.out xray-log.a.out.* | less
llvm-xray account -sort=count -sortorder=dsc -instr_map ./a.out xray-log.a.out.*
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LLVM-XRay

Explanation
The logging functions by default prune records that are less than 5
microseconds equivalent in walltime deduced from the cycle counter deltas.
This allows XRay to retain only records that have a measurable impact in
walltime.

We want higher fidelity/lower overhead!
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The solution: Hardware Support!
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Software Performance Counters (OS)

• Network Packages sent
• Virtual Memory Operations
• . . .
• Let’s say We want to write code that is efficient at the
microarchitectural level
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Software is good, Hardware is better!
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Hardware Performance Counters

• Special registers that can be configured to count low-level events
• Fixed number can be active at runtime

• Can be used to define collected events as well as intervals
• Unfortunately:

• Often buggy or unmaintained
• Sometimes poorly documented
• Accuracy can be poor

• The common ones are usually okay
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Examples

Try this
hlgr@sprite17:~$ perf list pmu | egrep "^ [^ ]" | less | wc

802 1009 45255
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Examples

And this
hlgr@sprite17:~$ perf list pmu | tail +53 | head -n 20
cache:

l1d.replacement
[L1D data line replacements]

l1d_pend_miss.fb_full
[Number of times a request needed a FB entry but there was no entry
available for it. That is the FB unavailability was dominant reason
for blocking the request. A request includes cacheable/uncacheable
demands that is load, store or SW prefetch]

l1d_pend_miss.pending
[L1D miss outstandings duration in cycles]

l1d_pend_miss.pending_cycles
[Cycles with L1D load Misses outstanding]

l1d_pend_miss.pending_cycles_any
[Cycles with L1D load Misses outstanding from any thread on physical
core]

l2_lines_in.all
[L2 cache lines filling L2]

l2_lines_out.non_silent
[Counts the number of lines that are evicted by L2 cache when triggered
by an L2 cache fill. Those lines are in Modified state. Modified lines
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But most importantly

RTFM!

i.e., the "Intel 64 and IA-32 Architectures Optimization Reference Manual"
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How does a CPU work?
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How does pipelined execution work?

An Empty CPU Pipeline

JMPCMPMULADDADD

Fetch Decode Exec Mem Write

AND
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How does pipelined execution work?

A Filled CPU Pipeline

Fetch Decode Exec Mem Write

JMP

CMP MUL ADD ANDADD
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How does pipelined execution work?

A control hazard/pipeline bubble

Fetch Decode Exec Mem Write

???

JMP
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How does Branch Prediction work?

A branch to be predicted (a.k.a., speculated upon)

Fetch Decode Exec Mem Write

BR

CMP MUL ADD ANDADD
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How does Branch Prediction work?

A speculatively executed branch

Fetch Decode Exec Mem Write

MUL

CMP MULBRADDADD
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How does Branch Prediction work?

Time of prediction resolution

Fetch Decode Exec Mem Write

AND

CMPMUL ADD BRADD
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How does Branch Prediction work?

Rollback upon misprediction

BRBR

Fetch Decode Exec Mem Write

BR
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How does pipelined execution work?

• Bottom line:
• CPUs can stall on control dependencies
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Resource Stalls

An ALU Stall

Fetch Decode Exec Mem Write

JMP

CMP MUL ADDAND
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Resource Stalls

• Bottom line:
• CPUs can stall due to lack of compute resources
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How does the memory subsystem work?

A CPU

CPU

Core 1

L1 Cache TLB

Last Level (L3) Cache

Memory

Registers

Core 2

L1 Cache TLB

L2 Cache

Registers

on die
off die

L2 Cache
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How does the memory subsystem work?

Memory Access Latencies (depending on locality)
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How does the memory subsystem work?

Memory Access Latencies (depending on data size)
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How does the memory subsystem work?

• Bottom line:
• CPUs can stall on data access
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Bottleneck analysis

• Let’s find some microarchitectural bottlenecks
• Data Stalls
• ALU Stalls
• Branch Mispredictions
• Control-flow dependencies
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Bottleneck analysis

Eligible
Instructions

Pipeline

Retired
Instructions

Abandoned
Instructions

ALU

Caches
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Bottleneck analysis

Micro-ops 
Issued?

Allocation 
Stall?

Micro-op 
Ever Retire?

Frontend 
Bound

Backend 
Bound

Bad 
Speculation Retiring

No Yes

No Yes

No Yes

Cache Miss 
Stalls Other Stalls
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Provide feedback, please!

https://co339.pages.doc.ic.ac.uk/feedback/profiling
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Get the slides online

https://co339.pages.doc.ic.ac.uk/decks/Profiling.pdf
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