
1 / 90

Performance Tracing & Profiling

Holger Pirk

Slides as of 14/01/22 11:57:44

3 / 90

Recall:

4 / 90

The Optimization Loop

New Feature Evaluate
Performance

Identify
Optimization
Opportunity

Done

No more
Opportunities?

Redesign

Optimize

Performance
insufficient?

Performance
sufficient?

Opportunities
Available?

5 / 90

So, how do we identify optimization opportunities?

6 / 90

How to identify optimization opportunities

• We identify the hot path (the code that takes the most time)
• We identify the bottleneck

• in terms of CPU, Memory, Network, . . .

• Both are functions of the system behavior

7 / 90

So, how do we describe system behavior?

9 / 90

What are events?

• Definition: Any change of the system state
• Usually restricted to a certain granularity

• Simple/atomic events
• sent package, executed instruction, loaded address from memory
• clock has ticked

• Complex events
• cache line evicted from L1 to L2 cache, instruction aborted due to

misspeculation

• Events have an optional payload
• An event has an accuracy: the degree to which its value represents
reality

10 / 90

What can you do with events?

Where they come from
• Event Sources are have two components

• The generator observes the changes to the system state
• Usually online, i.e., part of the runtime environment/system

• The consumer processes the events
• Can be offline or online

Where they go
• Tracing
• Profiling

12 / 90

Trace

• Definition: A complete log of every state the system has ever been in
(in the period of interest)
• Comprised of events
• Events are ordered (usually totally ordered)

• Accuracy is "inherited" from the vents
• Event collection overhead may be high

13 / 90

Example: Call stack tracing

14 / 90

Call stack tracing

A typical call stack

Address
0x231fa90
0x7828b72
0x8913ee1

• So, what does a stack look like in reality?

15 / 90

A call stack

Illustration

Return Address

Saved EBP

Return Address

Variables & Stuff

Saved EBP

Return Address

Saved EBP

Variables & Stuff

Variables & Stuff

16 / 90

Call stack tracing

Problems
• Recording the entire call stack is quite expensive

• The stack needs to be walked, pointers need chasing
• Call stacks can be deep
• All frame pointers have to be written to memory

• In particular for small/cheap functions, call stack processing can be
way more expensive than the function itself

17 / 90

We call this problem. . .

19 / 90

Perturbation

Definition: Perturbation
The degree to which the performance of a system
changes when it is being analyzed.

• Perturbation negatively affects accuracy if it is non-deterministic
• A bit like quantum theory

• You influence the state of the system just by looking at it

20 / 90

How do we reduce perturbation?

21 / 90

How to reduce perturbation

• We reduce fidelity
• Fidelity (Oxford Dictionary): the degree of exactness with which
something is copied or reproduced

• Perfect fidelity, i.e., every event is recorded
• Reduced fidelity, i.e., not every event is recorded

22 / 90

How?

24 / 90

Sampling

• Idea: do not collect all events to reduce perturbation
• Option 1: Sample in regular intervals
• Option 2: Sample in random intervals

25 / 90

Example: Call stack sampling

• Idea: Skip some events
• there is a chance you will not sample a function
• Fortunately, more expensive functions will be sampled more often

• But:
• good performance
• even more important: less perturbation
• fidelity can be traded against performance/fidelity

26 / 90

What is an interval?

28 / 90

Sampling Intervals

• The distance of two samples being taken
• Obviously, interval size 1 makes sampling equal to event-tracing

• Two options for specification: time-based and event-based

29 / 90

Time-based Intervals

• Idea: set a (hardware) recurrant timer and sample whenever it runs out
• We use CPU reference cycles as a proxy metric
• Inaccurate, non-deterministic and noisy (computer clocks are poorly
defined)
• Clock rate varies, clocks may not be exactly synchronized among
CPUs, etc.

• Easy to interpret (since time is inversely proportional to performance)

30 / 90

Event-based Intervals

• Generalization of Time-based intervals (since computer time is
discrete)

• Define an interval in terms of the occurence of an event
• Example: sample every fifth function call
• Accurate, deterministic semantics and low noise
• Tricky to interpret (in the end, we are interested in time)

31 / 90

Quantization errors

• Interval resolution is limited (usually to single clock cycles but
sometimes more)

• Time is (practically) continuous
• This introduces "quantization errors/biases"

• E.g., costs being attributed to the wrong state

32 / 90

Here is an interesting instance of event-based intervals:

34 / 90

Indirect Tracing

• Idea: trace events that dominate others
• Think of it as intervals defined by the execution flow
• For example, control-flow instructions (if, else, for, while) dominate
non-control-flow instructions

• can be used to reduce overhead
• Fidelity and accuracy depends on the event and the indirection

35 / 90

Wrapup: Tracing

• Tracing collects (subsets of) events
• Perturbation is a problem but can be worked around
• But: Analyzing traces is extremely tedious

• Lots of data, little structure, lots of cognitive overhead

36 / 90

The solution:

38 / 90

Profiling

Definition: Profile
An outline of something, especially a person’s face, as seen from one side.

39 / 90

Profiling

A profile

40 / 90

Profiling

Definition: Profile
A graphical or other representation of information relating to particular
characteristics of something, recorded in quantified form

In our context
A characterization of a system in terms of the resources it spends in certain
states.

41 / 90

Profile

• An aggregate over the events of a specific metric
• This can be a global aggregate

• Total cache misses, total CPU cycles
• Or broken down by some other event

• Cycles per instruction (CPI), cache misses by line of code

• Caution: Information is lost
• Why?

• Post-mortem for ease of interpretation
• Realtime to reduce perturbation (assuming aggregation is cheaper than
dumping)

43 / 90

Flame Graphs

Flame GraphReset Zoom Search

mys.. m..
mysqld`row_search_for_mysql

mysqld`handle_one_connection

my..

mysqld`do_command

my..

mysqld`find_all_keys

mysqld`btr..

mysq..

mysqld`handle_select

mysqld`JOIN::exec

l..

mys..

libc..

mysqld`sub_select
mysqld`eval..

m..my..

mysqld`mysql_select

libc.so.1`_lwp_start

mysql..

m..
mysq..

mysqld`handler::read_multi_range..

mysq..

mysqld`mysql_execute_command

mysqld`ha_innobase::general_fetch

mysqld`ha_innobase::general_fetch
mysqld`row_..

mys..

mysql..

mysqld`ro..

mysql..mysqld`row_search_for_mysql

mysqld`filesort

mysqld`dispatch_command
mysqld`mysql_parse

l..

mysq..

mysqld`join_read_prev

mysqld`ha_innobase::index_next_..

mysqld`execute_sqlcom_select

mysql..
mysql..

l..

m..
m..

mys..

my..

mysqld`row_sel_get_..

mysqld`ha_innobase::index_prevmysqld`QUICK_RANGE_SELECT::get_n..

mysq..
mysqld`do_select

m..

my..

mysqld`handler::read_range_next

libc.so.1`_thrp_setup

mysq..

mysqld`btr..

mysqld`create_sort_index

my..

https://queue.acm.org/detail.cfm?id=2927301

https://queue.acm.org/detail.cfm?id=2927301

44 / 90

Flame Graphs

• X-axis shows the stack profile population, sorted alphabetically (not by
time),

• Y-axis shows stack depth
• Each rectangle represents a stack frame
• Width of a box is preoportional to the number of collected samples
• Colors are usually not significant

45 / 90

Okay, now that we know what to do with events. . .

46 / 90

. . . let us talk about specific ways to collect events

48 / 90

Requirements for event sources

• Detailed
• As much information as we need

• Accurate
• The measurements should closely describe the real-world

• Little perturbation

49 / 90

Where to get events?

• Software
• Library: Manual Instrumentation/Logging
• Compiler: Automatic Instrumentation
• OS: Kernel Counters

• Hardware:
• Performance counter

• Emulator:
• a funky hybrid, minimal perturbation but usually not scalable

51 / 90

Instrumentation

• Augmenting program with event logging code
• Advantages

• No need for any hardware support
• very flexible

• Disadvantages
• Overhead is high
• Perturbation is high

52 / 90

Instrumentation

• Three approaches
• Manual Instrumentation
• Automatic source-level instrumentation
• Automatic binary instrumentation

• Static (compile-time) or
• Dynamic (runtime)
• As usual, there are hybrids

53 / 90

Manual

• basically printf logging (or using a logging library)
• Advantages

• Fine control over instrumentation
• Needs no support from hardware or compiler

• Disadvantages
• high overhead for implementation & runtime
• usually disabled for release build

• needs recompilation for selective enabling

54 / 90

Automatic

• Usually compiler-supported
• Source-to-source rewriting is possible
• Disadvantages

• Less control
• Need for compiler support

• Advantages
• Let’s discuss this!

55 / 90

Binary Instrumentation

• Static
• No magic, simple, portable
• Instrumentation overhead can be assessed from binary

• Dynamic
• No recompilation
• Can be performed on running process
• Works with JiT-compiled code

57 / 90

• http://llvm.org/docs/XRay.html

http://llvm.org/docs/XRay.html

58 / 90

LLVM-XRay

curl --compressed https://www.gutenberg.org/cache/epub/2229/pg2229.txt | iconv -c -f UTF8 -t
ASCII | tr -d '\r' > faust.txt↪→

for i in {1..1000}; do cat faust.txt >> faust1000.txt; done
clang++ -g -O0 -fxray-instrument -fxray-instruction-threshold=1 ~/pegrep.cpp
XRAY_OPTIONS="patch_premain=true xray_mode=xray-basic verbosity=1" ./a.out faust1000.txt

llvm-xray convert -f yaml -symbolize -instr_map ./a.out xray-log.a.out.* | less
llvm-xray account -sort=count -sortorder=dsc -instr_map ./a.out xray-log.a.out.*

59 / 90

LLVM-XRay

Explanation
The logging functions by default prune records that are less than 5
microseconds equivalent in walltime deduced from the cycle counter deltas.
This allows XRay to retain only records that have a measurable impact in
walltime.

We want higher fidelity/lower overhead!

60 / 90

The solution: Hardware Support!

62 / 90

Software Performance Counters (OS)

• Network Packages sent
• Virtual Memory Operations
• . . .
• Let’s say We want to write code that is efficient at the
microarchitectural level

63 / 90

Software is good, Hardware is better!

65 / 90

Hardware Performance Counters

• Special registers that can be configured to count low-level events
• Fixed number can be active at runtime

• Can be used to define collected events as well as intervals
• Unfortunately:

• Often buggy or unmaintained
• Sometimes poorly documented
• Accuracy can be poor

• The common ones are usually okay

66 / 90

Examples

Try this
hlgr@sprite17:~$ perf list pmu | egrep "^ [^]" | less | wc

802 1009 45255

67 / 90

Examples

And this
hlgr@sprite17:~$ perf list pmu | tail +53 | head -n 20
cache:

l1d.replacement
[L1D data line replacements]

l1d_pend_miss.fb_full
[Number of times a request needed a FB entry but there was no entry
available for it. That is the FB unavailability was dominant reason
for blocking the request. A request includes cacheable/uncacheable
demands that is load, store or SW prefetch]

l1d_pend_miss.pending
[L1D miss outstandings duration in cycles]

l1d_pend_miss.pending_cycles
[Cycles with L1D load Misses outstanding]

l1d_pend_miss.pending_cycles_any
[Cycles with L1D load Misses outstanding from any thread on physical
core]

l2_lines_in.all
[L2 cache lines filling L2]

l2_lines_out.non_silent
[Counts the number of lines that are evicted by L2 cache when triggered
by an L2 cache fill. Those lines are in Modified state. Modified lines

68 / 90

But most importantly

RTFM!

i.e., the "Intel 64 and IA-32 Architectures Optimization Reference Manual"

70 / 90

How does a CPU work?

71 / 90

How does pipelined execution work?

An Empty CPU Pipeline

JMPCMPMULADDADD

Fetch Decode Exec Mem Write

AND

72 / 90

How does pipelined execution work?

A Filled CPU Pipeline

Fetch Decode Exec Mem Write

JMP

CMP MUL ADD ANDADD

73 / 90

How does pipelined execution work?

A control hazard/pipeline bubble

Fetch Decode Exec Mem Write

???

JMP

75 / 90

How does Branch Prediction work?

A branch to be predicted (a.k.a., speculated upon)

Fetch Decode Exec Mem Write

BR

CMP MUL ADD ANDADD

76 / 90

How does Branch Prediction work?

A speculatively executed branch

Fetch Decode Exec Mem Write

MUL

CMP MULBRADDADD

77 / 90

How does Branch Prediction work?

Time of prediction resolution

Fetch Decode Exec Mem Write

AND

CMPMUL ADD BRADD

78 / 90

How does Branch Prediction work?

Rollback upon misprediction

BRBR

Fetch Decode Exec Mem Write

BR

79 / 90

How does pipelined execution work?

• Bottom line:
• CPUs can stall on control dependencies

80 / 90

Resource Stalls

An ALU Stall

Fetch Decode Exec Mem Write

JMP

CMP MUL ADDAND

81 / 90

Resource Stalls

• Bottom line:
• CPUs can stall due to lack of compute resources

82 / 90

How does the memory subsystem work?

A CPU

CPU

Core 1

L1 Cache TLB

Last Level (L3) Cache

Memory

Registers

Core 2

L1 Cache TLB

L2 Cache

Registers

on die
off die

L2 Cache

83 / 90

How does the memory subsystem work?

Memory Access Latencies (depending on locality)

1

10

100

1000

8 64 512 4K 32K 256K

P
ro

c
e

s
s
in

g
 T

im
e

 p
e

r
V

a
lu

e
 i
n

 C
P

U
 C

y
c
le

s

Stride in Bytes

cycles

84 / 90

How does the memory subsystem work?

Memory Access Latencies (depending on data size)

1

10

100

4K 32K 256K 2M 16M

P
ro

c
e

s
s
in

g
 T

im
e

 p
e

r
V

a
lu

e
 i
n

 C
P

U
 C

y
c
le

s

Size of Accessed Area in Bytes

cycles

85 / 90

How does the memory subsystem work?

• Bottom line:
• CPUs can stall on data access

86 / 90

Bottleneck analysis

• Let’s find some microarchitectural bottlenecks
• Data Stalls
• ALU Stalls
• Branch Mispredictions
• Control-flow dependencies

87 / 90

Bottleneck analysis

Eligible
Instructions

Pipeline

Retired
Instructions

Abandoned
Instructions

ALU

Caches

88 / 90

Bottleneck analysis

Micro-ops
Issued?

Allocation
Stall?

Micro-op
Ever Retire?

Frontend
Bound

Backend
Bound

Bad
Speculation Retiring

No Yes

No Yes

No Yes

Cache Miss
Stalls Other Stalls

89 / 90

Provide feedback, please!

https://co339.pages.doc.ic.ac.uk/feedback/profiling

90 / 90

Get the slides online

https://co339.pages.doc.ic.ac.uk/decks/Profiling.pdf

	Motivation
	Events
	Tracing
	Perturbation
	Sampling
	Sampling Intervals
	Indirect Tracing
	Profiling
	Example: Flame Graphs
	Event Sources
	Instrumentation
	Demo time!!!
	Performance Counting
	Hardware Performance Counters
	Example: Microarchitectural bottleneck analysis
	How does Branch Prediction work?

