Performance Modeling

Holger Pirk

Slides as of 14/01/22 11:57:44

1/78

Imperial College London



Today, | am out of my depth

¢ Giuliano knows the theory of this much better than me
e But, | know how a CPU works :-)
e So, | get to tell you the practical side of things
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Where we stand

* We can (empirically) determine performance metrics of hardware &
software systems if we have access to

e hardware to run it on
 the code
e the input
e What happens if we lack one of these?
* We need to model it!

e Why would that happen, you ask?
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Why would we need analytical performance modeling

* When we want to know performance "on the cheap" (i.e. without
running)
» For charging before execution
e For provisioning systems
¢ Other reasons?
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System (Model) Aspects

Machine —> Machine Model \

Code > Code Model

\'4

System Model > Profile

Data > Data Model /

Alright, let's model something!
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Before we start. . .
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Operating assumptions

* We make simplifying assumptions about the input

» We assume a known distribution (usually uniform without correlation)
* We do not model system noise

e Could be caused by scheduling, other processes, external factors, ...
e In this lecture, we assume single-threaded, deterministic code

» Modeling contention in parallel systems is an open research topic
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Performance modeling approaches

e Two approaches:

Numerical /Experimental Model  Analytical Model

o A series of datapoints o A formal characterization of the
describing the observed relationship between parameters
behavior of the system and performance metrics

o Useful to describe system  Often difficult to interpret for
behaviour for humans humans (moderately useful to

o Predictive power depends on describe system)
interpretation (example is * Prediction is performed by
coming up) evaluating the model
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Numerical models step 1: gathering data

What we want

Parameter Metric
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But how do we get pristine results like this?
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Numerical models step 1: gathering data

e Through Microbenchmarking

o "Microbenchmarks are small, specially designed programs use to test
some specific portion of a system"
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Numerical models step 1: gathering data

A Memory Subsystem Microbenchmark

extern int* input;
extern size_t N; // some large constant
extern size_t stride; // the parameter of our experiment
int sum = 0;
for(size_t i = 0; i < N; i += stride) {
sum += input[stride];

}
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Numerical models step 2: interpret
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Numerical models step 2: interpret

 Prediction through, for example, interpolation
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Numerical models step 2: interpret
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Numerical models pro/cons

e Advantages

Easy to get (if the system is available)
Based on ground truth
Relatively easy to interpret

e Disadvantages

Generalize poorly (i.e., cannot easily be applied to new environments)
Massive amounts of experimental data needed for high-dimensional
system parameter spaces

Limited accuracy for/confidence in prediction (data may be missing,
inaccurate, ...)

Limited interpretability: contributing factors are (at best) implicit
Limited insight: how does the system actually work?
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The alternative:
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The alternative: analytical models

max(hR Jhg )—] DA(R . " .
i ,j)+ DA(R,, "), if hy >h
DA' _total(R,,R,)= { : 2 R > g,

DA(R,,j)+ DA(Ry., ). if hy < hg,

j=abs‘hR] —hg, ‘+1

12)

abs‘hkl —hkz{ DA(Rl ,j), if hR] > th
+

& |2 DA(R,.j), if hy <hy,

A Model for an R-Tree
Theodoridis et al.: Cost Models for Join Queries in Spatial Databases
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Analytical models

Analytical model development is more an art than a craft
Requires detailed understanding of the system

e The parameters
e The effects

* Requires extensive validation

» Results always questionable

Often end up very complicated to deal with edge cases
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Analytical models are often complex

Example: Database plan selection
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Turning empirical models into analytical ones. ..
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Turning empirical models into analytical ones. ..

e Through some form of regression

29 / 78 Imperial College London



How is this different from numerical modeling?

30 /78 Imperial College London



Admittedly, the line is blurry!
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| have decided that interpolation is numerical while regression is
analytical
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But some things really cannot be done using numerical modeling?
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How do you model that. ..
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...or that?
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...or that?

For completeness, here is the code

extern int* input;
extern size_t N; // some large constant
extern size_t size; // the parameter of our experiment
int sum = 0;
for(size_t i = 0; i < N; i ++) {
sum += input[i 7 sizel; // in reality you would use a
// bitmask rather than modulo which is exzpensive
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We need to apply Al

Actual Intelligence (and some simplifying assumptions)
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Analytical model ingredients

e A Characteristic Equation (potentially with parameters) — An equation
that describes the behavior of the target metric of your experiment or
system in dependence of a varied parameter

 In our examples: stride and data size
e Values for system parameters

e In our examples: access latency, access granularity (block size) and
capacity of the caches
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As seen in [Manegold et al., Generic database cost models for
hierarchical memory systems]
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What do we know about the system we are trying to model

CPU
Core 1 Core 2

|| [Registers| | | || [ |[Regters|| |

L1 Cache TLB L1 Cache TLB

Last Level (L2) Cache

off die
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System parameters

Variable | Description

By: Size of a General Purpose Register of the CPU

lo: Access Latency of the Level 1 Cache

Co: Capacity of a General Purpose Register of the CPU

Bu: Size of a cache line of the Level 1 cache

I Access Latency of the Level 2 Cache

Ch: Capacity of the Level 1 Cache

By: Size of a cache line of the Level 2 cache

Iy Access Latency of the main memory

Co: Capacity of the Level 2 Cache

Bs: Size of a Memory Page

l3: Lookup time in the Page Table

Cs: Number of Memory Pages in the TLB tims Page size
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A characteristic, non-linear equation

Thiem average time for a memory access

s = stride
. S . S
Thiem = l3 - min <1, Bg) + I - man (1, B2>

411 - min <1, ;) + lp - min <1, ;0)
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A characteristic, non-linear equation

Thiem average time for a memory access

TMem =

10

10+ 11

0+ 11+13
0+11412+13

size < C1
size < C2
size < C3
Otherwise
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Fitting the characteristic equation
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Demo Time!
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Demo Time!

https://www.wolframcloud.com/obj/hlgr/Published/CPUModel.nb
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https://www.wolframcloud.com/obj/hlgr/Published/CPUModel.nb

System parameters determined through fitting
characteristic equation

Variable | Value

By: 1 word (64 bit)
lo: 1 cycle

Co: 1 word

By: 8 words

l 3 cycles

Ci: 4096 words
Bs: 8 words

lo 55 cycles

Cy: 786432 words
Bs: 512 words

l3: 1 cycle

Cs: 131072 words
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A note

o Some of these can be read from documentation

* However, self tuning systems
* require less work/expertise

e are more resilient
e scale forward (i.e., work on future architectures)

* and are sometimes more accurate. . .
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Modeling Memory Access

Let's model this

extern int* inputl; // uniform random data

extern int* input2; // random data

int sum = 0;

for(size_t i = 0; i < inputSize; i++) {
sum += input2[inputi[i]];

}
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Parameters

Memory Regions
e it's length (R.n), i.e., the number of stored tuples and
e it's width (R.w), the size of a tuple in processor words (we will
assume a processor with 64bit words).
* The size of the region (| R|) is defined as the product of length and
width.

Access Patterns
e 1 the number of words read in each access
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Modeling sequential access
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Estimating the number of cache misses — not examinable

If Rw—u<B If Rw—u>B

Rw-R.n

M (s_trav) = D

M (st =Rn-|—=
J(s_trav) = R.n ’VBz-‘

[Pirk, Holger, et al. "Cache conscious data layouting for in-memory
databases."]
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Estimating the number of cache misses — not examinable

Extra cache misses due to misalignment
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Estimating the number of cache misses — not examinable

If Rw—u>B

M? (s_trav) = Rn q
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Modeling random access (with repetitive access to
elements)

IR

o Additional parameter r, number of accesses
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Modeling complex patterns

P1 @ Py the sequential execution of the access patterns P; and Py

P1 ® Py the concurrent execution of access patterns.
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Example

extern intx inputl; // uniform random data, 1024 value
extern int* input2; // random data, 64 values
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {
sum += input2[inputi1[i]];

}
s _trav(Rw = 1,u=1,R.n =1024)
orr_acc(Rw =1,u=1,R.n = 64,r = 1024)
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Example

extern struct{int a; int b; int c;}* inputl; // uniform random data, 1024 value
extern int* input2; // random data, 64 values
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {
sum += input2[inputi[i].al;

}
s_trav(Rw = 3,u=1,R.n =1024)
orr_acc(Rw =1,u=1,R.n = 64,r = 1024)
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Modeling random access without repetitive access
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Results

Hash Join Build Hash Join Probe
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Modeling dynamic effects using stochastic methods

Some effects/components have dynamic state

State can influence behavior and performance

Analytical models are, by definition, stateless

Stochastical models/processes can form the bridge between the two

e Many exist: random walks, gaussian processes, levy-processes. . .
 and most importantly: Markov Processes/Chains
e This is one of Giuliano's core research interests

(I am using them when | have to)
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(Discrete) Markov chains

 Basically a finite-state machine with transition probabilities

e They have "the Markov property": the next state is only dependent on
the previous state and a random variable
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Modeling code

A simple loop

extern int* input; // wuniform random ints between 0 and 100
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {
if (input[i] > s) {
sum += inputl[il;

}
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Modeling code

25—

Absolute time in s

20 40 60 80 100

Selectivity in %
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Modeling code

A simple loop

extern int* input; // uniform random data
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {
if (input[i] > 20) {
sum += input[il;

}

What is the branch misprediction rate?
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Branch predictors

Pattern history table

Predicti
Branch history rediction

0110

n—]

its

o
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Let's think about this in Markov terms

taken taken taken

strongly weakly weakly strongly
not taken not taken taken taken

not taken not taken not taken

taken
not taken

o Implemented in a saturated counter
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The solution

taken taken taken

weakly weakly strongly
not taken taken taken

not taken

taken
not taken

strongly
not taken

not taken not taken

 Probability of the branch predictor predicting taken:

e The probability of it being in one of the states on the right
* We can calculate the probability of it being in any state as the
stationary distribution

e Branch misprediction rate:

e (P(pred_taken)* P(act _not_taken)) + (P(pred not taken) x
P(act_taken))
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Validation

Comparing stationary distribution with
performance counter

3

Bvent Count in % from overall branches

0 10 20 30 40 50 60 70 80 90 100

Selectivity
2 States —— 4 States —5— 5 States (H1NT)
—o— 5 States (HT) 6 States —— 7 States (+1T)
—a&— T States (+INT) 8 States =e= Ivy Sample
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Modeling the entire system

e |s usually infeasible due to scale and noise

* We need to apply modeling with care

 Step 1: identify parts of the code that matter for performance using a
profiler
¢ Hot code sections (vtune calls this "bottlenecks")

e Step 2: re-create their relevant behavior in a controlled environment
e Step 3: Model

 Step 4: Validate

o We will practise this in the next interactive session
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Provide feedback, please!

[https://co339 .pages.doc.ic.ac.uk/feedback/modeli ng]
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Get the slides online

[https ://co339.pages.doc.ic.ac.uk/decks/PerformanceModeling. pdf]
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