Performance Modeling

Holger Pirk

Slides as of 14/01/22 11:57:44

1/78

Imperial College London

Today, | am out of my depth

¢ Giuliano knows the theory of this much better than me
e But, | know how a CPU works :-)
e So, | get to tell you the practical side of things

3/78 Imperial College London

Where we stand

* We can (empirically) determine performance metrics of hardware &
software systems if we have access to

e hardware to run it on
 the code
e the input
e What happens if we lack one of these?
* We need to model it!

e Why would that happen, you ask?

5/78 Imperial College London

Why would we need analytical performance modeling

* When we want to know performance "on the cheap" (i.e. without
running)
» For charging before execution
e For provisioning systems
¢ Other reasons?

6/78 Imperial College London

System (Model) Aspects

Machine —> Machine Model \

Code > Code Model

\'4

System Model > Profile

Data > Data Model /

Alright, let's model something!

8/ 78 Imperial College London

Before we start. . .

9/ 78 Imperial College London

Operating assumptions

* We make simplifying assumptions about the input

» We assume a known distribution (usually uniform without correlation)
* We do not model system noise

e Could be caused by scheduling, other processes, external factors, ...
e In this lecture, we assume single-threaded, deterministic code

» Modeling contention in parallel systems is an open research topic

10/ 78 Imperial College London

Performance modeling approaches

e Two approaches:

Numerical /Experimental Model Analytical Model

o A series of datapoints o A formal characterization of the
describing the observed relationship between parameters
behavior of the system and performance metrics

o Useful to describe system Often difficult to interpret for
behaviour for humans humans (moderately useful to

o Predictive power depends on describe system)
interpretation (example is * Prediction is performed by
coming up) evaluating the model

11/ 78 Imperial College London

Numerical models step 1: gathering data

What we want

Parameter Metric

E- SOOI AN o)

5
0.5
1.5
25
35
4.5
55

o &
OWONRFRORNNWOR

13/ 78 Imperial College London

But how do we get pristine results like this?

14 /78 Imperial College London

Numerical models step 1: gathering data

e Through Microbenchmarking

o "Microbenchmarks are small, specially designed programs use to test
some specific portion of a system"

15/ 78 Imperial College London

Numerical models step 1: gathering data

A Memory Subsystem Microbenchmark

extern int* input;
extern size_t N; // some large constant
extern size_t stride; // the parameter of our experiment
int sum = 0;
for(size_t i = 0; i < N; i += stride) {
sum += input[stride];

}

16 /78 Imperial College London

Numerical models step 2: interpret

6l
5_
4f °
[]
3 ° °
2r ° ° °
1¢ o
An_n A s s s s
1 2 3 4 5

17 /78 Imperial College London

Numerical models step 2: interpret

 Prediction through, for example, interpolation

18 / 78

Imperial College London

Numerical models step 2: interpret

g 1000 g :
2 E cycles +
=)
o
o
£ 100 b
S 3
S +F
2 o
2 ol
= £
[
£
73
173
Q
o
o
T 1L L L L L
8 64 512 4K 32K 256K

Stride in Bytes

20 / 78 Imperial College London

Numerical models pro/cons

e Advantages

Easy to get (if the system is available)
Based on ground truth
Relatively easy to interpret

e Disadvantages

Generalize poorly (i.e., cannot easily be applied to new environments)
Massive amounts of experimental data needed for high-dimensional
system parameter spaces

Limited accuracy for/confidence in prediction (data may be missing,
inaccurate, ...)

Limited interpretability: contributing factors are (at best) implicit
Limited insight: how does the system actually work?

21 /78

Imperial College London

The alternative:

22 /78 Imperial College London

The alternative: analytical models

max(hR Jhg)—] DA(R . " .
i ,j)+ DA(R,, "), if hy >h
DA' _total(R,,R,)= { : 2 R > g,

DA(R,,j)+ DA(Ry.,). if hy < hg,

j=abs‘hR] —hg, ‘+1

12)

abs‘hkl —hkz{ DA(Rl ,j), if hR] > th
+

& |2 DA(R,.j), if hy <hy,

A Model for an R-Tree
Theodoridis et al.: Cost Models for Join Queries in Spatial Databases

24 / 78 Imperial College London

Analytical models

Analytical model development is more an art than a craft
Requires detailed understanding of the system

e The parameters
e The effects

* Requires extensive validation

» Results always questionable

Often end up very complicated to deal with edge cases

25 / 78 Imperial College London

Analytical models are often complex

Example: Database plan selection

21.776 %
9.709 %
7927 %
7919 %
7.797 %
6.908 %
6811 %
6.182 %
5.200 %
3.889 %
2268%
2,051 %

100

LINEITEM.L_EXTENDEDPRICE

0 2 a0 60 s oo Wess o001
SUBPLIER.S_ACCTBAL

26 / 78 Imperial College London

Turning empirical models into analytical ones. ..

6 °
5_
4 °
[]

3 ° °
2r ° ° °
1¢ o

A~nn s s s s

1 2 3 4 5

28 / 78 Imperial College London

Turning empirical models into analytical ones. ..

e Through some form of regression

29 / 78 Imperial College London

How is this different from numerical modeling?

30 /78 Imperial College London

Admittedly, the line is blurry!

31/ 78 Imperial College London

| have decided that interpolation is numerical while regression is
analytical

32/ 78 Imperial College London

But some things really cannot be done using numerical modeling?

33/ 78 Imperial College London

How do you model that. ..

g 1000 g ,
[&) F
> F
O L
35 i
o
o
£ 100 |- |
S E + bk 3
g s +F]
g I]
g 10 '
= 3 E
=) C]
£ c .
2] L 4
[%2]
m B -
[&]
o)
a 1 U L L I I

8 64 512 4K 32K 256K

Stride in Bytes

34 /78 Imperial College London

...or that?

100 T T T

T
cycles +

10

Processing Time per Value in CPU Cycles

4K 32K 256K 2M 16M

Size of Accessed Area in Bytes

35 /78 Imperial College London

...or that?

For completeness, here is the code

extern int* input;
extern size_t N; // some large constant
extern size_t size; // the parameter of our experiment
int sum = 0;
for(size_t i = 0; i < N; i ++) {
sum += input[i 7 sizel; // in reality you would use a
// bitmask rather than modulo which is exzpensive

36 /78 Imperial College London

We need to apply Al

Actual Intelligence (and some simplifying assumptions)

37 /78 Imperial College London

Analytical model ingredients

e A Characteristic Equation (potentially with parameters) — An equation
that describes the behavior of the target metric of your experiment or
system in dependence of a varied parameter

 In our examples: stride and data size
e Values for system parameters

e In our examples: access latency, access granularity (block size) and
capacity of the caches

38 /78 Imperial College London

As seen in [Manegold et al., Generic database cost models for
hierarchical memory systems]

40 / 78 Imperial College London

What do we know about the system we are trying to model

CPU
Core 1 Core 2

|| [Registers| | | || [|[Regters|| |

L1 Cache TLB L1 Cache TLB

Last Level (L2) Cache

off die

41/ 78 Imperial College London

System parameters

Variable | Description

By: Size of a General Purpose Register of the CPU

lo: Access Latency of the Level 1 Cache

Co: Capacity of a General Purpose Register of the CPU

Bu: Size of a cache line of the Level 1 cache

I Access Latency of the Level 2 Cache

Ch: Capacity of the Level 1 Cache

By: Size of a cache line of the Level 2 cache

Iy Access Latency of the main memory

Co: Capacity of the Level 2 Cache

Bs: Size of a Memory Page

l3: Lookup time in the Page Table

Cs: Number of Memory Pages in the TLB tims Page size
42 /78 Imperial College London

A characteristic, non-linear equation

Thiem average time for a memory access

s = stride
. S . S
Thiem = l3 - min <1, Bg) + I - man (1, B2>

411 - min <1, ;) + lp - min <1, ;0)

43 /78 Imperial College London

A characteristic, non-linear equation

Thiem average time for a memory access

TMem =

10

10+ 11

0+ 11+13
0+11412+13

size < C1
size < C2
size < C3
Otherwise

44 /78

Imperial College London

Fitting the characteristic equation

g 1000 g ,
[&) F
> F
O L
35 i
o n
o
£ 100 |- |
S E + bk 3
g s +F]
g I]
g 10 '
= 3 E
=) C]
£ c .
2] L 4
[%2]
m B -
[&]
o)
a 1 U L L I I

8 64 512 4K 32K 256K

Stride in Bytes

45 / 78 Imperial College London

Demo Time!

46 / 78 Imperial College London

Demo Time!

https://www.wolframcloud.com/obj/hlgr/Published/CPUModel.nb

47/ 78 Imperial College London

https://www.wolframcloud.com/obj/hlgr/Published/CPUModel.nb

System parameters determined through fitting
characteristic equation

Variable | Value

By: 1 word (64 bit)
lo: 1 cycle

Co: 1 word

By: 8 words

l 3 cycles

Ci: 4096 words
Bs: 8 words

lo 55 cycles

Cy: 786432 words
Bs: 512 words

l3: 1 cycle

Cs: 131072 words

48 / 78 Imperial College London

A note

o Some of these can be read from documentation

* However, self tuning systems
* require less work/expertise

e are more resilient
e scale forward (i.e., work on future architectures)

* and are sometimes more accurate. . .

49 / 78 Imperial College London

Modeling Memory Access

Let's model this

extern int* inputl; // uniform random data

extern int* input2; // random data

int sum = 0;

for(size_t i = 0; i < inputSize; i++) {
sum += input2[inputi[i]];

}

51 /78 Imperial College London

Parameters

Memory Regions
e it's length (R.n), i.e., the number of stored tuples and
e it's width (R.w), the size of a tuple in processor words (we will
assume a processor with 64bit words).
* The size of the region (| R|) is defined as the product of length and
width.

Access Patterns
e 1 the number of words read in each access

52 / 78 Imperial College London

Modeling sequential access

53 /78

Imperial College London

Estimating the number of cache misses — not examinable

If Rw—u<B If Rw—u>B

Rw-R.n

M (s_trav) = D

M (st =Rn-|—=
J(s_trav) = R.n ’VBz-‘

[Pirk, Holger, et al. "Cache conscious data layouting for in-memory
databases."]

54 /78 Imperial College London

Estimating the number of cache misses — not examinable

Extra cache misses due to misalignment

55 / 78 Imperial College London

Estimating the number of cache misses — not examinable

If Rw—u>B

M? (s_trav) = Rn q

56 / 78 Imperial College London

Modeling random access (with repetitive access to
elements)

IR

o Additional parameter r, number of accesses

57 / 78 Imperial College London

Modeling complex patterns

P1 @ Py the sequential execution of the access patterns P; and Py

P1 ® Py the concurrent execution of access patterns.

58 / 78 Imperial College London

Example

extern intx inputl; // uniform random data, 1024 value
extern int* input2; // random data, 64 values
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {
sum += input2[inputi1[i]];

}
s _trav(Rw = 1,u=1,R.n =1024)
orr_acc(Rw =1,u=1,R.n = 64,r = 1024)

59 / 78 Imperial College London

Example

extern struct{int a; int b; int c;}* inputl; // uniform random data, 1024 value
extern int* input2; // random data, 64 values
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {
sum += input2[inputi[i].al;

}
s_trav(Rw = 3,u=1,R.n =1024)
orr_acc(Rw =1,u=1,R.n = 64,r = 1024)

60 / 78 Imperial College London

Modeling random access without repetitive access

61/ 78 Imperial College London

Results

Hash Join Build Hash Join Probe

1e+10 50 T =
| 1 tev09 |
*
* 08 [
1e+08 |] 1408
+
tev07 | 1 tev07 |
1406 [1 tev06 |
fo0000 X 4 100000 p L1Cache Misses + =
L1 Cache Misses + L2 Cache Misses X
10000 L2CacheMisses X] 10000 Elapsed CPU Cycles % |
Elapsed CPUCycles ¥ Predicted L1 Cache Misses ———
1000 Predicted L1 Cache Misses 1000 Predicted L2 Cache Misses ———
Predicted L2 Cache Misses 3 Predicted Elapsed CPU Cycles ———
Predicted Elapsed CPU Cycles Predicted Elapsed CPU Cycles (Original Modell) ~ ~
100 I h ! L 100 I I ! I
a® 32K 256K kY 1M 126M 4« Y 256K £ 16M 126M
Stride n Byles Size of Input Regions

s_trav() ©r_trav() ®s_trav()orr_acc()Os__trav()

62 /78 Imperial College London

Modeling dynamic effects using stochastic methods

Some effects/components have dynamic state

State can influence behavior and performance

Analytical models are, by definition, stateless

Stochastical models/processes can form the bridge between the two

e Many exist: random walks, gaussian processes, levy-processes. . .
 and most importantly: Markov Processes/Chains
e This is one of Giuliano's core research interests

(I am using them when | have to)

64 / 78 Imperial College London

(Discrete) Markov chains

 Basically a finite-state machine with transition probabilities

e They have "the Markov property": the next state is only dependent on
the previous state and a random variable

65/ 78 Imperial College London

Modeling code

A simple loop

extern int* input; // wuniform random ints between 0 and 100
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {
if (input[i] > s) {
sum += inputl[il;

}

67 / 78 Imperial College London

Modeling code

25—

Absolute time in s

20 40 60 80 100

Selectivity in %

68 / 78 Imperial College London

Modeling code

A simple loop

extern int* input; // uniform random data
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {
if (input[i] > 20) {
sum += input[il;

}

What is the branch misprediction rate?

70 / 78 Imperial College London

Branch predictors

Pattern history table

Predicti
Branch history rediction

0110

n—]

its

o

71/ 78

Imperial College London

Let's think about this in Markov terms

taken taken taken

strongly weakly weakly strongly
not taken not taken taken taken

not taken not taken not taken

taken
not taken

o Implemented in a saturated counter

72 /78 Imperial College London

The solution

taken taken taken

weakly weakly strongly
not taken taken taken

not taken

taken
not taken

strongly
not taken

not taken not taken

 Probability of the branch predictor predicting taken:

e The probability of it being in one of the states on the right
* We can calculate the probability of it being in any state as the
stationary distribution

e Branch misprediction rate:

e (P(pred_taken)* P(act _not_taken)) + (P(pred not taken) x
P(act_taken))

73 /78 Imperial College London

Validation

Comparing stationary distribution with
performance counter

3

Bvent Count in % from overall branches

0 10 20 30 40 50 60 70 80 90 100

Selectivity
2 States —— 4 States —5— 5 States (H1NT)
—o— 5 States (HT) 6 States —— 7 States (+1T)
—a&— T States (+INT) 8 States =e= Ivy Sample

74 / 78 Imperial College London

Modeling the entire system

e |s usually infeasible due to scale and noise

* We need to apply modeling with care

 Step 1: identify parts of the code that matter for performance using a
profiler
¢ Hot code sections (vtune calls this "bottlenecks")

e Step 2: re-create their relevant behavior in a controlled environment
e Step 3: Model

 Step 4: Validate

o We will practise this in the next interactive session

76 / 78 Imperial College London

Provide feedback, please!

[https://co339 .pages.doc.ic.ac.uk/feedback/modeli ng]

77 /78 Imperial College London

Get the slides online

[https ://co339.pages.doc.ic.ac.uk/decks/PerformanceModeling. pdf]

78 / 78 Imperial College London

	Today, I am out of my depth
	Motivation
	Performance Modeling
	Numerical models
	Example
	Analytical models
	Model Fitting
	Analytical modeling example: memory access
	Predicting Memory Access Costs
	Modeling stateful systems
	Example: Modeling code
	Example: Modeling branch prediction
	Performance modeling recipe

