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Today, I am out of my depth

• Giuliano knows the theory of this much better than me
• But, I know how a CPU works :-)
• So, I get to tell you the practical side of things
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Where we stand

• We can (empirically) determine performance metrics of hardware &
software systems if we have access to

• hardware to run it on
• the code
• the input

• What happens if we lack one of these?
• We need to model it!

• Why would that happen, you ask?
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Why would we need analytical performance modeling

• When we want to know performance "on the cheap" (i.e. without
running)

• For charging before execution
• For provisioning systems
• Other reasons?
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System (Model) Aspects

SystemModel

Machine Model

CodeModel

Data Model

Code

Machine

Data

Profile

Alright, let’s model something!
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Before we start. . .
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Operating assumptions

• We make simplifying assumptions about the input
• We assume a known distribution (usually uniform without correlation)

• We do not model system noise
• Could be caused by scheduling, other processes, external factors, . . .

• In this lecture, we assume single-threaded, deterministic code
• Modeling contention in parallel systems is an open research topic
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Performance modeling approaches

• Two approaches:

Numerical/Experimental Model
• A series of datapoints
describing the observed
behavior of the system

• Useful to describe system
behaviour for humans

• Predictive power depends on
interpretation (example is
coming up)

Analytical Model
• A formal characterization of the
relationship between parameters
and performance metrics

• Often difficult to interpret for
humans (moderately useful to
describe system)

• Prediction is performed by
evaluating the model
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Numerical models step 1: gathering data

What we want
Parameter Metric

0 1
1 0
2 3
3 2
4 2
5 4

0.5 0
1.5 1
2.5 3.2
3.5 1.9
4.5 3
5.5 6
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But how do we get pristine results like this?
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Numerical models step 1: gathering data

• Through Microbenchmarking
• "Microbenchmarks are small, specially designed programs use to test
some specific portion of a system"
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Numerical models step 1: gathering data

A Memory Subsystem Microbenchmark
extern int* input;
extern size_t N; // some large constant
extern size_t stride; // the parameter of our experiment
int sum = 0;
for(size_t i = 0; i < N; i += stride) {

sum += input[stride];
}
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Numerical models step 2: interpret
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Numerical models step 2: interpret
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• Prediction through, for example, interpolation
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Numerical models step 2: interpret
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Numerical models pro/cons

• Advantages
• Easy to get (if the system is available)
• Based on ground truth
• Relatively easy to interpret

• Disadvantages
• Generalize poorly (i.e., cannot easily be applied to new environments)
• Massive amounts of experimental data needed for high-dimensional
system parameter spaces

• Limited accuracy for/confidence in prediction (data may be missing,
inaccurate, . . . )

• Limited interpretability: contributing factors are (at best) implicit
• Limited insight: how does the system actually work?
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The alternative:
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The alternative: analytical models
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Notice that the corresponding cost formulae of subsection
3.1 for two R-trees of the same height (Eq. 7 and Eq. 10) are
special cases of the above formulae (Eq. 11 and Eq. 12,
respectively) since they are identical for 

21 RR hh = .

In this section we proposed analytical formulae for the cost
estimation of a join query between two R-tree-indexed spatial
data sets. The proposed cost model is based on primitive data
properties only without the corresponding R-trees needed to be
built. In the next section we evaluate our model by comparing
the analytical estimations with experimental results on synthetic
and real data sets of dimensionality n ≤ 2.

4. Evaluation of the model
The evaluation of the proposed cost formulae was based on a
variety of experimental tests on synthetic and real data sets.
Synthetic data sets consist of (i) random and (ii) skewed
distributions of varying cardinality N (20K ≤ N ≤ 80K) and
density D (0.2 ≤ D ≤ 0.8), and have been constructed by using
random number generators. Real two-dimensional data sets are
parts of the TIGER database of the U.S. Bureau of Census
[Bur91].

We built R*-tree indexes [BKSS90] on those data sets and
performed several spatial joins. All experimental results were
computed on an HP700 workstation with 256 Mbytes of main
memory and several Gbytes of secondary storage. On the other
hand, the analytical estimations of node (disk) accesses were
based on Eq. 7 (Eq. 10) for R-trees of the same height and Eq.
11 (Eq. 12) for R-trees of different height with the average
capacity of the tree indexes being set to the typical c = 67%
value and the maximum node capacity being set to M = 84 (M =
50) for dimensionality n = 1 (n = 2), values that correspond to
page size of 1 Kbyte.

4.1. Comparison results on uniform-like data
By evaluating the analytical formulae on random (uniform-like)
data we conclude the following:
(i) When no buffering scheme is adopted (i.e., the estimated
number of node accesses NA is evaluated) then the accuracy of
the estimated cost is always high, with the relative error never
exceeding 10%.
(ii) When a path buffer is adopted then the estimated cost of R2
(i.e., the tree that plays the role of the query set) is always very
close to the actual cost (relative error usually below 5%), while
the estimated cost of R1 (i.e., the tree that plays the role of the
data set) is usually 10%-15% far from the experimental result.
The accuracy of the cost estimation for R2  is expected since the
existence of a buffer has been considered in Eq. 8, while Eq. 9
assumes that the buffer existence does not affect R1, an

assumption that lowers the accuracy of its cost estimation.
However, as already mentioned in subsection 3.1, the exception
to that general rule is hardly modeled.
(iii) The above conclusions stand for all random data set
combinations in both dimensionalities considered (n = 1, 2).

Figures 5a and 5b illustrate the experimental and analytical
results of node and disk accesses (denoted by NA and DA) for
one- and two-dimensional random data sets, respectively, for all

1RN /
2RN  combinations. (relevant conclusions also stand for

varying density D). The linearity of the plots in Figure 5a is due
to the fact that all R-tree indexes on one-dimensional data sets
of our tests are of equal height h = 3. On the other hand, this is
not the fact for the results on two-dimensional data sets (Figure
5b) since the height of the two-dimensional indexes of
cardinality 20K ≤ N ≤ 40K (60K ≤ N ≤ 80K) is equal to h = 3 (h
= 4). The above conclusion is clearly illustrated in Figures 6a
and 6b, which show the NA and DA costs for equally populated
indexes of dimensionality n = 1 and n = 2, respectively.

According to our experiments it also turns out that the cost
formulae for the estimation of disk accesses DA are non-
symmetric with respect to the trees R1 and R2, a fact that has
been already mentioned during the presentation of the cost
models in Section 3. The comparison results confirm that, for
tree indexes of equal height, the choice of the less (more)
populated index to play the role of the ‘query’ (‘data’) tree is
the best choice for the effectiveness of SJ algorithm, which
however is not a general rule for trees of different height (all
areas in Figure 7 follow the rule, except AREA 2 and AREA 3
in Figure 7b).

4.2. Comparison results on non-uniform data
The cost model presented in Section 3 is also shown to be
applicable for non-uniform data sets. According to the
discussion of [TS96], appropriate transformations are necessary
in order to reduce the uniformity assumption of the underlying
analytical model from global (i.e., assuming the global
workspace) to local (i.e., assuming a small sub-area of the
workspace). This is done by transforming the actual density
DRi

 to a set of local densities (applying sampling procedures)

as described in [TS96].
The relative error was always shown to be around 10%-20%.

In addition, for the real data sets used in our experiments, a
relative error below 15% appeared for all combinations.

In conclusion, the estimated cost of spatial joins is very close
to the actual experimental results for uniform-like or non-
uniform data distributions. This fact makes the proposed
formulae useful tools for SDBMS query processors and
optimizers, especially when complex queries (e.g. nested joins)
are involved. Compared to related work about estimation
models for spatial joins [Gun93, AS94], our work provides
robust analytical formulae which: (i) do not need knowledge of
the two R-tree structures, since they are only based on data
properties (recall that both related studies assumed knowledge
of index properties), and (ii) are shown to be accurate by
performing a wide set of experiments on both uniform-like and
non-uniform data sets (not supported by previous work).

A Model for an R-Tree
Theodoridis et al.: Cost Models for Join Queries in Spatial Databases
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Analytical models

• Analytical model development is more an art than a craft
• Requires detailed understanding of the system

• The parameters
• The effects

• Requires extensive validation
• Results always questionable

• Often end up very complicated to deal with edge cases
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Analytical models are often complex

Example: Database plan selection

(a) Plan Diagram (b) Reduced Diagram (Threshold λ = 10%)

Figure 2: Sample Plan Diagram and Reduced Plan Diagram (QT8)

the Cost Diagram quantitatively depicts the estimated query pro-
cessing costs of the plans shown in the associated plan diagram,
while the Cardinality Diagram displays the estimated result car-
dinalities. These diagrams can be drilled-down at individual loca-
tions to determine the operator trees of the plans at those locations
(Schematic Plan-tree diagram), with the tree nodes optionally
annotated with cost and cardinality information (Compiled Plan-
tree diagram). The structural differences between a given pair of
plans can be identified through the Plan-Difference diagram, with
the differences highlighted in a color-coded format.
Picasso also supports comparison of an optimizer’s plan choices

with those made by other engines at the same locations, or by the
same engine operating at a different optimization level (Foreign
Plan-tree diagram). So, for example, an IBM developer interested
in a particular query instance, can visually ascertain and compare
DB2’s plan choice for this query with those made by other engines
such as Oracle and SQL Server. Finally, recent versions of several
optimizers have included a “foreign plan costing” (FPC) feature in
their API, that is, of costing plans outside their native optimality re-
gions (e.g. Optimization Profile in DB2, XML Plan in SQL Server,
and Abstract Plan in Sybase ASE). This FPC feature is used by Pi-
casso to visually characterize the cost behavior of a designated plan
over the entire selectivity space (Abstract-Plan diagram).

Plan-replacement Diagrams. Perhaps the most appealing as-
pect of Picasso is that it also supports the construction of
plan-replacement diagrams. Here, the query template’s original
plan/cost diagrams are taken as input, and new plan diagrams are
constructed wherein a subset of the optimizer’s original choices
are replaced by alternative plans from the POSP set. The replace-
ments are made on the expectation that they will perform better than
the original choices (Reduced Plan and Robust Plan diagrams).
The motivation for these substitute diagrams, and their construction
techniques, are discussed in detail in Section 5.

Run-time Diagrams. Finally, apart from the above compile-time
diagrams, Picasso also generates run-time diagrams that visually
describe the actual query performance behavior, in terms of execu-
tion time and result cardinalities, on the current database platform
(Execution Cost and Execution Cardinality diagrams). Compar-

ing the predicted and actual diagrams helps in understanding and
profiling the modeling quality of the optimizer.

Compile-time Diagrams

Plan Diagram A pictorial enumeration of the optimizer’s execu-
tion plan choices over the selectivity space.

Cost Diagram A visualization of the associated estimated plan ex-
ecution costs over the selectivity space.

Cardinality
Diagram

A visualization of the associated estimated query
result cardinalities over the selectivity space.

Schematic Plan-
tree Diagram

A tree visualization of a selected plan in the plan
diagram.

Plan-difference
Diagram

Highlights the schematic differences between a se-
lected pair of plans that appear in the plan diagram.

Compiled
Plan-tree
Diagram

A tree visualization of a selected plan at a specific
location in the plan diagram, annotated with cost
and cardinality information.

Foreign
Plan-tree
Diagram

At a given location in a plan diagram produced on
a database engine, a tree visualization of the plan
produced by another engine (or the same engine at
another optimization level) at this location.

Abstract-Plan
Diagram

A visualization of the estimated behavior of a se-
lected plan in the plan diagram, when this specific
plan is used throughout the selectivity space.

Plan-replacement Diagrams

Reduced Plan
Diagram

Shows the extent to which the original plan dia-
gram may be simplified (by replacing some of the
plans with their siblings in the plan diagram) with-
out increasing the cost of any individual query by
more than a user-specified threshold value.

Robust Plan
Diagram

Shows the extent to which the plans in the original
plan diagram may be replaced by comparatively ro-
bust plans without increasing the cost of any indi-
vidual query by more than a user-specified thresh-
old value.

Run-time Diagrams
Execution Cost
Diagram

A visualization of the runtime query response times
over the selectivity space.

Execution Car-
dinality Diagram

A visualization of the runtime query result cardi-
nalities over the selectivity space.

Table 1: Picasso Diagram Suite

1518
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Turning empirical models into analytical ones. . .
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Turning empirical models into analytical ones. . .
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• Through some form of regression
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How is this different from numerical modeling?
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Admittedly, the line is blurry!
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I have decided that interpolation is numerical while regression is
analytical
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But some things really cannot be done using numerical modeling?
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How do you model that. . .
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. . . or that?
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. . . or that?

For completeness, here is the code
extern int* input;
extern size_t N; // some large constant
extern size_t size; // the parameter of our experiment
int sum = 0;
for(size_t i = 0; i < N; i ++) {

sum += input[i % size]; // in reality you would use a
// bitmask rather than modulo which is expensive

}
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We need to apply AI

Actual Intelligence (and some simplifying assumptions)
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Analytical model ingredients

• A Characteristic Equation (potentially with parameters) – An equation
that describes the behavior of the target metric of your experiment or
system in dependence of a varied parameter

• In our examples: stride and data size
• Values for system parameters

• In our examples: access latency, access granularity (block size) and
capacity of the caches
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As seen in [Manegold et al., Generic database cost models for
hierarchical memory systems]
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What do we know about the system we are trying to model

CPU
Core 1

L1 Cache TLB

Last Level (L2) Cache

Memory

Registers

Core 2

L1 Cache TLB

Registers

on die
off die

Cache LineCache LineCache LineCache Line

…
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System parameters

Variable Description
B0: Size of a General Purpose Register of the CPU
l0: Access Latency of the Level 1 Cache
C0: Capacity of a General Purpose Register of the CPU
B1: Size of a cache line of the Level 1 cache
l1 Access Latency of the Level 2 Cache
C1: Capacity of the Level 1 Cache
B2: Size of a cache line of the Level 2 cache
l2 Access Latency of the main memory
C2: Capacity of the Level 2 Cache
B3: Size of a Memory Page
l3: Lookup time in the Page Table
C3: Number of Memory Pages in the TLB tims Page size
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A characteristic, non-linear equation

TMem average time for a memory access

s = stride

TMem = l3 ·min

(
1,

s
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+l1 ·min
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A characteristic, non-linear equation

TMem average time for a memory access

TMem =


l0 size < C1
l0+ l1 size < C2
l0+ l1+ l3 size < C3
l0+ l1+ l2+ l3 Otherwise
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Fitting the characteristic equation
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Demo Time!
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Demo Time!

https://www.wolframcloud.com/obj/hlgr/Published/CPUModel.nb

https://www.wolframcloud.com/obj/hlgr/Published/CPUModel.nb
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System parameters determined through fitting
characteristic equation

Variable Value
B0: 1 word (64 bit)
l0: 1 cycle
C0: 1 word
B1: 8 words
l1 3 cycles
C1: 4096 words
B2: 8 words
l2 55 cycles
C2: 786432 words
B3: 512 words
l3: 1 cycle
C3: 131072 words
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A note

• Some of these can be read from documentation
• However, self tuning systems

• require less work/expertise
• are more resilient
• scale forward (i.e., work on future architectures)
• and are sometimes more accurate. . .
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Modeling Memory Access

Let’s model this
extern int* input1; // uniform random data
extern int* input2; // random data
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {

sum += input2[input1[i]];
}
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Parameters

Memory Regions
• it’s length (R.n), i.e., the number of stored tuples and
• it’s width (R.w), the size of a tuple in processor words (we will
assume a processor with 64bit words).

• The size of the region (‖R‖) is defined as the product of length and
width.

Access Patterns
• u the number of words read in each access
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Modeling sequential access

. . .

u

R.w

1 2 3 R.n

||R||

Figure 1: Single Sequential Traversal:
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Figure 2: Single Random Traversal:
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Figure 3: Interleaved Multi-Cursor Access:

single sequential traversal:

A sequential traversal sequentially sweeps over , ac-

cessing each data item in exactly once. The optional

parameter gives the number of bytes that are actually

used of each data item. If not specified, we assume

that all bytes are used, i.e., . If specified,

we require . models the fact that an

operator, e.g., an aggregation or a projection (either as

separate operator or in-lined with another operator),

accesses only a subset of its input’s attributes. For

simplicity of presentation, we assume that we always

access consecutive bytes. Though not completely

accurate, this is a reasonable abstraction in our case.5

Figure 1 shows a sample sequential traversal.

repetitive sequential traversal:

A repetitive sequential traversal performs sequential

traversals over after another. specifies, whether all

traversals sweep over in the same direction ( :

uni-directional), or whether subsequent traversals go

in alternating directions ( : bi-directional).

single random traversal:

Like a sequential traversal, a random traversal ac-

cesses each data item in exactly once, reading or

writing bytes. However, the data items are not ac-

cessed in the order they are stored, but rather ran-

domly. Figure 2 depicts a sample random traversal.

repetitive random traversal:

A repetitive random traversal performs random

traversals over after another. We assume that the

permutation orders of two subsequent traversals are

independent of each other. Hence, there is no point

in discriminating uni-directional and bi-directional ac-

cesses, here. Therefore, we omit parameter .

random access:

Random access hits randomly chosen data items in

5In case the bytes are somehow spread across the whole item width
, say as times bytes ( ), one can replace

by with and .

after another. We assume, that each data item may

be hit more than once, and that the choices are inde-

pendent of each other. Even with we do not

require that each data item is accessed at least once.

interleaved multi-cursor access:

A nested multi-cursor access models a pattern where

is divided into (equal-sized) sub-regions. Each

sub-region has its own local cursor. All local cursors

perform the same basic pattern, given by . speci-

fies, whether the global cursor picks the local cursors

randomly ( ) or sequentially ( ). In

the latter case, specifies, whether all traversals of

the global cursor across the local cursors use the same

direction ( ), or whether subsequent traver-

sals use alternating directions ( ). Figure 3

shows a sample interleaved multi-cursor access.

3.3 Compound Access Patterns

Database operations access more than one data region, usu-

ally at least their input(s) and their output. This means,

they perform more complex data access patterns than the

basic ones we introduced in the previous section. In order

to model these complex patterns, we now introduce com-

pound data access patterns. Unless we need to explicitly

distinguish between basic and compound data access pat-

terns, we refer to both as data access patterns, or simply

patterns. We use , , and to denote the set

of basic access patterns, compound access patterns, and all

access patterns, respectively. We require .

Be ( ) data access patterns. There

are two principle ways to combine two or more patterns.

Either the patterns are executed one after the other or they

are executed concurrently. We call the first combination

sequential execution and denote it by operator ;

the second combination represents concurrent execution

and is denoted by operator . The result of

either combination is again a (compound) data access pat-

tern. Hence, we can apply and repeatedly to describe

complex patterns. By definition, is commutative, while
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Estimating the number of cache misses – not examinable

If R.w − u < B

M s
i (s_trav) =

R.w ·R.n

Bi

If R.w − u > B

M s
i (s_trav) = R.n ·

⌈
u

Bi

⌉
[Pirk, Holger, et al. "Cache conscious data layouting for in-memory
databases."]
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Estimating the number of cache misses – not examinable

Extra cache misses due to misalignment

Line 1 Line 2

u
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Estimating the number of cache misses – not examinable

If R.w − u > B

M s
i (s_trav) = R.n ·

(⌈
u

Bi

⌉
+

(u− 1) mod Bi

Bi

)
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Modeling random access (with repetitive access to
elements)

1,3 r 2...

‖ R ‖
R.w

u

• Additional parameter r, number of accesses
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Modeling complex patterns

P1 � P2 the sequential execution of the access patterns P1 and P2
P1 � P2 the concurrent execution of access patterns.
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Example

Code
extern int* input1; // uniform random data, 1024 value
extern int* input2; // random data, 64 values
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {

sum += input2[input1[i]];
}

Access pattern description

s_trav(R.w = 1, u = 1, R.n = 1024)

�rr_acc(R.w = 1, u = 1, R.n = 64, r = 1024)
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Example

Let’s model this
extern struct{int a; int b; int c;}* input1; // uniform random data, 1024 value
extern int* input2; // random data, 64 values
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {

sum += input2[input1[i].a];
}

Access pattern description

s_trav(R.w = 3, u = 1, R.n = 1024)

�rr_acc(R.w = 1, u = 1, R.n = 64, r = 1024)
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Modeling random access without repetitive access

. . .
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1 2 3 R.n
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Figure 1: Single Sequential Traversal:

. . .
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Figure 2: Single Random Traversal:
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Figure 3: Interleaved Multi-Cursor Access:

single sequential traversal:

A sequential traversal sequentially sweeps over , ac-

cessing each data item in exactly once. The optional

parameter gives the number of bytes that are actually

used of each data item. If not specified, we assume

that all bytes are used, i.e., . If specified,

we require . models the fact that an

operator, e.g., an aggregation or a projection (either as

separate operator or in-lined with another operator),

accesses only a subset of its input’s attributes. For

simplicity of presentation, we assume that we always

access consecutive bytes. Though not completely

accurate, this is a reasonable abstraction in our case.5

Figure 1 shows a sample sequential traversal.

repetitive sequential traversal:

A repetitive sequential traversal performs sequential

traversals over after another. specifies, whether all

traversals sweep over in the same direction ( :

uni-directional), or whether subsequent traversals go

in alternating directions ( : bi-directional).

single random traversal:

Like a sequential traversal, a random traversal ac-

cesses each data item in exactly once, reading or

writing bytes. However, the data items are not ac-

cessed in the order they are stored, but rather ran-

domly. Figure 2 depicts a sample random traversal.

repetitive random traversal:

A repetitive random traversal performs random

traversals over after another. We assume that the

permutation orders of two subsequent traversals are

independent of each other. Hence, there is no point

in discriminating uni-directional and bi-directional ac-

cesses, here. Therefore, we omit parameter .

random access:

Random access hits randomly chosen data items in

5In case the bytes are somehow spread across the whole item width
, say as times bytes ( ), one can replace

by with and .

after another. We assume, that each data item may

be hit more than once, and that the choices are inde-

pendent of each other. Even with we do not

require that each data item is accessed at least once.

interleaved multi-cursor access:

A nested multi-cursor access models a pattern where

is divided into (equal-sized) sub-regions. Each

sub-region has its own local cursor. All local cursors

perform the same basic pattern, given by . speci-

fies, whether the global cursor picks the local cursors

randomly ( ) or sequentially ( ). In

the latter case, specifies, whether all traversals of

the global cursor across the local cursors use the same

direction ( ), or whether subsequent traver-

sals use alternating directions ( ). Figure 3

shows a sample interleaved multi-cursor access.

3.3 Compound Access Patterns

Database operations access more than one data region, usu-

ally at least their input(s) and their output. This means,

they perform more complex data access patterns than the

basic ones we introduced in the previous section. In order

to model these complex patterns, we now introduce com-

pound data access patterns. Unless we need to explicitly

distinguish between basic and compound data access pat-

terns, we refer to both as data access patterns, or simply

patterns. We use , , and to denote the set

of basic access patterns, compound access patterns, and all

access patterns, respectively. We require .

Be ( ) data access patterns. There

are two principle ways to combine two or more patterns.

Either the patterns are executed one after the other or they

are executed concurrently. We call the first combination

sequential execution and denote it by operator ;

the second combination represents concurrent execution

and is denoted by operator . The result of

either combination is again a (compound) data access pat-

tern. Hence, we can apply and repeatedly to describe

complex patterns. By definition, is commutative, while
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Results

Hash Join Build
CHAPTER 5. EVALUATION

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

4K 32K 256K 2M 16M 128M

Stride in Bytes

L1 Cache Misses
L2 Cache Misses

Elapsed CPU Cycles
Predicted L1 Cache Misses
Predicted L2 Cache Misses

Predicted Elapsed CPU Cycles

Figure 5.3: Costs of Hash Building (Parallel Sequential and Random Traversal)

work and we only report the results of our experiments to demonstrate the impact of our extensions to
the model on the predictive performance. The third access patter, sequential traversal with conditional
reads was defined in this thesis and is, consequently, inspected more accurately. All the experiments
consist of the reading of an input region and accesses to an output region. They are to reflect operations
that are performed by operators of the relational algebra.

Random Traversal

A random traversal is performed by a hash join operator in the hash building phase. An input relation
is sequentially (s trav) and a temporary bu↵er randomly traversed (r trav) to build the hash. Thus,
the access pattern is s trav r trav with equal tuple widths (u = R.w) and number of tuples (R.n).
In our experiment (see Appendix A.3 for the source code), we filled the input relation with randomly
distributed unique integer values (R.w = 1). The maximal value of these was the size of the input field.
When performing the hash build, we used the value of the integer as hash value, and inserted it at a
position in the temporary bu↵er accordingly.

Figure 5.3 shows the predicted and measured values for the L1 and L2 misses as well as the CPU
costs for a varying number of values (R.n). The figure shows a non-linear increase of the respective
costs when the size of the input exceeds the size of a cache. All three depicted measures show that the
increase comes earlier than predicted. This can be explained by the higher number of evictions through
the prefetching.

Repetitive Random Access

The probing phase of a hash join is characterized by a repetitive random accesses (as is the aggregation in
a group by). For our experiment (see Appendix A.4 for the source code), we, again, filled an input relation
with random values. They were, however, not required to be unique, but completely independent random
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s_trav() � r_trav()

Hash Join Probe
5.2. COST MODEL EVALUATION
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Figure 5.4: Costs of Hash Probing (Parallel Sequential and Random Traversal)

values (the maximal value was, again, the field size). In the experiment the input relation (s trav) was
traversed sequentially and the values used to access the temporary bu↵er that was build in the last
experiment. The access pattern is, therefore, s trav rr acc. Figure 5.4 shows the resulting L1/L2
misses as well as the elapsed CPU cycles as well as the prediction for this experiment.

Similar to the last experiment, the measured values show an early and stronger increase than the
prediction. This can, again, be explained by the increased number of cache line evictions due to prefetch-
ing. The impact of this e↵ect is, however, higher than it is on a random traversal. This is due to the
di↵erence in cache line reuse: incorrectly prefetched cache lines in a random traversal have a relatively
high chance of being accessed later on because every cache line is accessed. In a repetitive random access,
not all cache lines are accessed which decreases the probability that an incorrectly prefetched cache line
is of use later on. Due to this the additional evictions, the costs of a repetitive random access to a large
input relation are underestimated in our model.

As reported in Section 3.1.3, we used a di↵erent weighting for the probability of multiple data items
being stored in the same cache line. To report the impact of this modification of Manegold’s model,
Figure 5.4 also shows the predicted costs using the original weighting (dashed line).

Sequential Traversal Conditional Read

The sequential traversal with conditional reads is our main extension to the generic cost model. It is
performed for the reconstruction of tuples in a column-store. For the evaluation (see Appendix A.5 for
the source code) we used a column oriented representation of tuples with 8 attributes. The condition,
a check of equality to a constant, was applied to the first attribute and the whole tuple reconstructed
if the condition held true. Thus, the access pattern is s trav s trav cr s trav cr s trav cr
s trav cr s trav cr s trav cr s trav cr. The relation was filled with R.n = 222 random integer
values (R.w = 1). We varied the number of distinct values, thus varying the selectivity of the predicate.
Figure 5.5a shows the resulting cache misses for a varying selectivity. For a low selectivity (few tuples
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Modeling dynamic effects using stochastic methods

• Some effects/components have dynamic state
• State can influence behavior and performance
• Analytical models are, by definition, stateless
• Stochastical models/processes can form the bridge between the two

• Many exist: random walks, gaussian processes, levy-processes. . .
• and most importantly: Markov Processes/Chains
• This is one of Giuliano’s core research interests

• (I am using them when I have to)
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(Discrete) Markov chains

State 1

State 2

State 3

.3

.9

.1

.5

.7

.5

• Basically a finite-state machine with transition probabilities
• They have "the Markov property": the next state is only dependent on
the previous state and a random variable
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Modeling code

A simple loop
extern int* input; // uniform random ints between 0 and 100
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {

if(input[i] > s) {
sum += input[i];

}
}
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Modeling code
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Modeling code

A simple loop
extern int* input; // uniform random data
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {

if(input[i] > 20) {
sum += input[i];

}
}

What is the branch misprediction rate?
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Branch predictors

29/01/2019, 08)46

Page 1 of 1file:///Users/hlgr/Downloads/Two-level_branch_prediction.svg
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Let’s think about this in Markov terms

29/01/2019, 07)03

Page 1 of 1https://upload.wikimedia.org/wikipedia/commons/c/c8/Branch_prediction_2bit_saturating_counter-dia.svg

• Implemented in a saturated counter



73 / 78

The solution

29/01/2019, 07)03

Page 1 of 1https://upload.wikimedia.org/wikipedia/commons/c/c8/Branch_prediction_2bit_saturating_counter-dia.svg

• Probability of the branch predictor predicting taken:
• The probability of it being in one of the states on the right
• We can calculate the probability of it being in any state as the

stationary distribution
• Branch misprediction rate:

• (P (pred_taken) ∗ P (act_not_taken)) + (P (pred_not_taken) ∗
P (act_taken))
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Validation

Comparing stationary distribution with
performance counter
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Modeling the entire system

• Is usually infeasible due to scale and noise
• We need to apply modeling with care
• Step 1: identify parts of the code that matter for performance using a
profiler

• Hot code sections (vtune calls this "bottlenecks")

• Step 2: re-create their relevant behavior in a controlled environment
• Step 3: Model
• Step 4: Validate
• We will practise this in the next interactive session
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Provide feedback, please!

https://co339.pages.doc.ic.ac.uk/feedback/modeling
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Get the slides online

https://co339.pages.doc.ic.ac.uk/decks/PerformanceModeling.pdf
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