Performance Modeling

Holger Pirk

Slides as of 14/01/22 11:57:44

Today, I am out of my depth

- · Giuliano knows the theory of this much better than me
- But, I know how a CPU works :-)
- So, I get to tell you the practical side of things

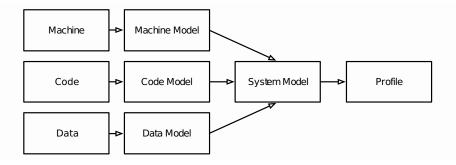
Where we stand

- We can (empirically) determine performance metrics of hardware & software systems if we have access to
 - hardware to run it on
 - the code
 - the input
- What happens if we lack one of these?
 - We need to model it!
- Why would that happen, you ask?

Why would we need analytical performance modeling

- When we want to know performance "on the cheap" (i.e. without running)
 - For charging before execution
 - For provisioning systems
 - Other reasons?

System (Model) Aspects



Alright, let's model something!

Before we start...

Operating assumptions

- We make simplifying assumptions about the input
 - We assume a known distribution (usually uniform without correlation)
- We do not model system noise
 - Could be caused by scheduling, other processes, external factors, \ldots
- In this lecture, we assume single-threaded, deterministic code
 - Modeling contention in parallel systems is an open research topic

Performance modeling approaches

• Two approaches:

Numerical/Experimental Model

- A series of datapoints describing the observed behavior of the system
- Useful to describe system behaviour for humans
- Predictive power depends on interpretation (example is coming up)

Analytical Model

- A formal characterization of the relationship between parameters and performance metrics
- Often difficult to interpret for humans (moderately useful to describe system)
- Prediction is performed by evaluating the model

Numerical models step 1: gathering data

What we want			
	Parameter	Metric	
	0	1	
	1	0	
	2	3	
	3	2	
	4	2	
	5	4	
	0.5	0	
	1.5	1	
	2.5	3.2	
	3.5	1.9	
	4.5	3	
	5.5	6	

But how do we get pristine results like this?

Numerical models step 1: gathering data

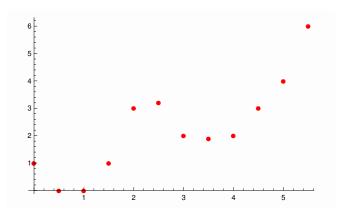
- Through Microbenchmarking
- "*Microbenchmarks* are small, specially designed programs use to test some specific portion of a system"

Numerical models step 1: gathering data

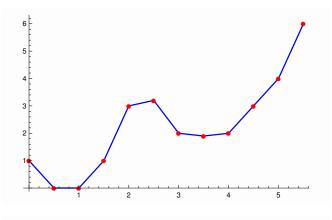
A Memory Subsystem Microbenchmark

```
extern int* input;
extern size_t N; // some large constant
extern size_t stride; // the parameter of our experiment
int sum = 0;
for(size_t i = 0; i < N; i += stride) {
   sum += input[stride];
}
```

Numerical models step 2: interpret

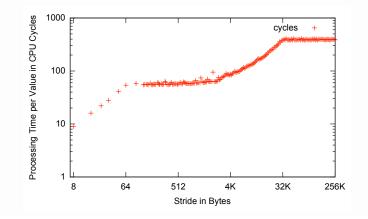


Numerical models step 2: interpret



• Prediction through, for example, interpolation

Numerical models step 2: interpret



Numerical models pro/cons

- Advantages
 - Easy to get (if the system is available)
 - Based on ground truth
 - Relatively easy to interpret
- Disadvantages
 - · Generalize poorly (i.e., cannot easily be applied to new environments)
 - Massive amounts of experimental data needed for high-dimensional system parameter spaces
 - Limited accuracy for/confidence in prediction (data may be missing, inaccurate, ...)
 - · Limited interpretability: contributing factors are (at best) implicit
 - · Limited insight: how does the system actually work?

The alternative:

The alternative: analytical models

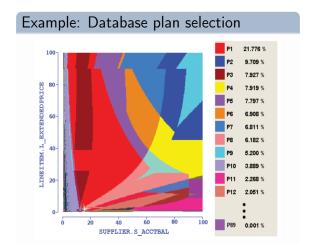
$$DA'_total(R_1, R_2) = \sum_{j=\text{abs}|h_{R_1} - h_{R_2}|+1}^{\max(h_{R_1}, h_{R_2})-1} \begin{cases} DA(R_1, j) + DA(R_2, j'), \text{ if } h_{R_1} > h_{R_2} \\ DA(R_1, j') + DA(R_2, j), \text{ if } h_{R_1} < h_{R_2} \end{cases} + \sum_{j=1}^{\text{abs}|h_{R_1} - h_{R_2}|} \begin{cases} DA(R_1, j), \text{ if } h_{R_1} > h_{R_2} \\ 2 \cdot DA(R_2, j), \text{ if } h_{R_1} < h_{R_2} \end{cases}$$
(12)

A Model for an R-Tree Theodoridis et al.: Cost Models for Join Queries in Spatial Databases

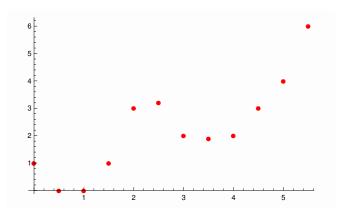
Analytical models

- Analytical model development is more an art than a craft
- · Requires detailed understanding of the system
 - The parameters
 - The effects
- Requires extensive validation
 - Results always questionable
- Often end up very complicated to deal with edge cases

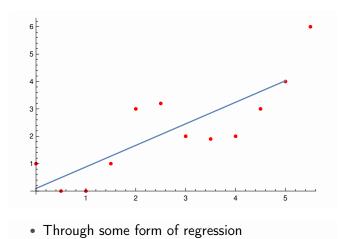
Analytical models are often complex



Turning empirical models into analytical ones...



Turning empirical models into analytical ones...



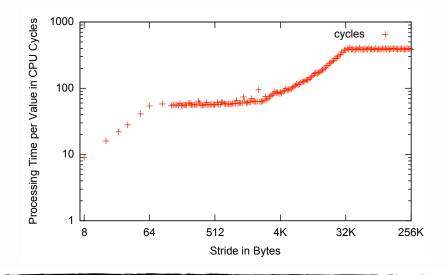
How is this different from numerical modeling?

Admittedly, the line is blurry!

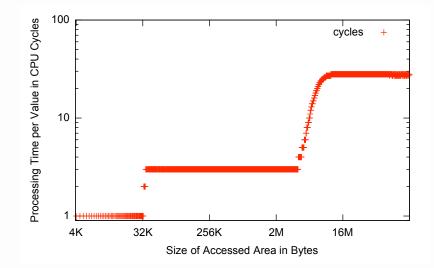
I have decided that interpolation is numerical while regression is analytical

But some things really cannot be done using numerical modeling?

How do you model that...



... or that?



... or that?

For completeness, here is the code

We need to apply $\ensuremath{\mathsf{AI}}$

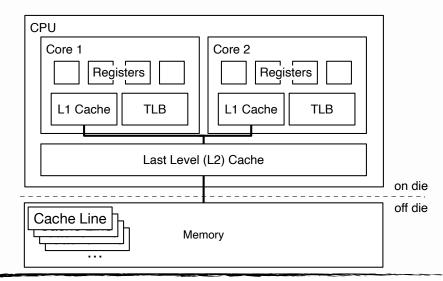
Actual Intelligence

(and some simplifying assumptions)

Analytical model ingredients

- A *Characteristic Equation* (potentially with parameters) An equation that describes the behavior of the target metric of your experiment or system in dependence of a varied parameter
 - In our examples: stride and data size
- Values for system parameters
 - In our examples: *access latency, access granularity (block size)* and *capacity* of the caches

As seen in [Manegold et al., Generic database cost models for hierarchical memory systems] What do we know about the system we are trying to model



System parameters

Variable	Description	
B_0 :	Size of a General Purpose Register of the CPU	
l_0 :	Access Latency of the Level 1 Cache	
C_0 :	Capacity of a General Purpose Register of the CPU	
B_1 :	Size of a cache line of the Level 1 cache	
l_1	Access Latency of the Level 2 Cache	
C_1 :	Capacity of the Level 1 Cache	
B_2 :	Size of a cache line of the Level 2 cache	
l_2	Access Latency of the main memory	
C_2 :	Capacity of the Level 2 Cache	
B_3 :	Size of a Memory Page	
l_3 :	Lookup time in the Page Table	
C_3 :	Number of Memory Pages in the TLB tims Page size	

A characteristic, non-linear equation

$T_{\ensuremath{\mathit{Mem}}}$ average time for a memory access

$$s = stride$$

$$T_{Mem} = l_3 \cdot min\left(1, \frac{s}{B_3}\right) + l_2 \cdot min\left(1, \frac{s}{B_2}\right)$$

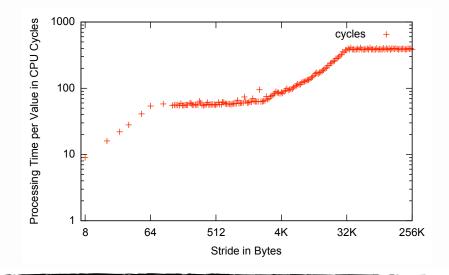
$$+ l_1 \cdot min\left(1, \frac{s}{B_1}\right) + l_0 \cdot min\left(1, \frac{s}{B_0}\right)$$

A characteristic, non-linear equation

$T_{\ensuremath{\mathit{Mem}}}$ average time for a memory access

$$T_{Mem} = \begin{cases} 10 & \text{size} < \text{C1} \\ 10 + \text{l1} & \text{size} < \text{C2} \\ 10 + \text{l1} + \text{l3} & \text{size} < \text{C3} \\ 10 + \text{l1} + \text{l2} + \text{l3} & \text{Otherwise} \end{cases}$$

Fitting the characteristic equation



Demo Time!

Demo Time!

https://www.wolframcloud.com/obj/hlgr/Published/CPUModel.nb

System parameters determined through fitting characteristic equation

Variable	Value
B_0 :	1 word (64 bit)
l_0 :	1 cycle
C_0 :	1 word
B_1 :	8 words
l_1	3 cycles
C_1 :	4096 words
B_2 :	8 words
l_2	55 cycles
C_2 :	786432 words
B_3 :	512 words
l_3 :	1 cycle
C_3 :	131072 words

A note

- Some of these can be read from documentation
- However, self tuning systems
 - require less work/expertise
 - are more resilient
 - scale forward (i.e., work on future architectures)
 - and are sometimes more accurate...

Modeling Memory Access

Let's model this

```
extern int* input1; // uniform random data
extern int* input2; // random data
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {
    sum += input2[input1[i]];
}</pre>
```

Parameters

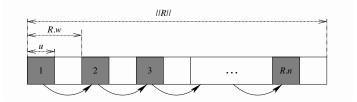
Memory Regions

- it's length (R.n), i.e., the number of stored tuples and
- it's width (*R.w*), the size of a tuple in processor words (we will assume a processor with 64bit words).
- The size of the region ($\|R\|$) is defined as the product of length and width.

Access Patterns

• u the number of words read in each access

Modeling sequential access



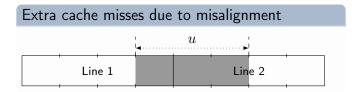
Estimating the number of cache misses - not examinable

If
$$R.w - u < B$$

 $M_i^s (s_trav) = \frac{R.w \cdot R.n}{B_i}$
If $R.w - u > B$
 $M_i^s (s_trav) = R.n \cdot \left[\frac{u}{B_i}\right]$

[Pirk, Holger, et al. "Cache conscious data layouting for in-memory databases."]

Estimating the number of cache misses - not examinable

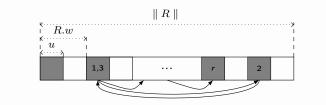


Estimating the number of cache misses - not examinable

If
$$R.w - u > B$$

$$M_i^s(s_trav) = R.n \cdot \left(\left\lceil \frac{u}{B_i} \right\rceil + \frac{(u-1) \mod B_i}{B_i} \right)$$

Modeling random access (with repetitive access to elements)



• Additional parameter r, number of accesses

Modeling complex patterns

 $\mathcal{P}_1 \oplus \mathcal{P}_2$ the sequential execution of the access patterns \mathcal{P}_1 and \mathcal{P}_2 $\mathcal{P}_1 \odot \mathcal{P}_2$ the concurrent execution of access patterns.

Example

Code

```
extern int* input1; // uniform random data, 1024 value
extern int* input2; // random data, 64 values
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {
    sum += input2[input1[i]];
}
```

Access pattern description

$$s_trav(R.w = 1, u = 1, R.n = 1024)$$

 $\odot rr_acc(R.w = 1, u = 1, R.n = 64, r = 1024)$

Example

Let's model this

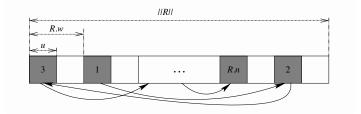
```
extern struct{int a; int b; int c;}* input1; // uniform random data, 1024 value
extern int* input2; // random data, 64 values
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {
        sum += input2[input1[i].a];
}</pre>
```

Access pattern description

$$s_trav(R.w = 3, u = 1, R.n = 1024)$$

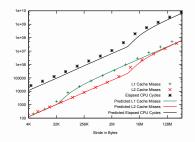
 $\odot rr_acc(R.w = 1, u = 1, R.n = 64, r = 1024)$

Modeling random access without repetitive access

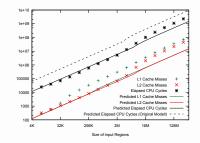


Results

Hash Join Build



Hash Join Probe



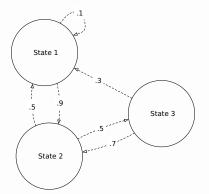
$$s_trav() \odot r_trav()$$

$$\oplus s_trav() \odot rr_acc() \odot s_trav()$$

Modeling dynamic effects using stochastic methods

- Some effects/components have dynamic state
- State can influence behavior and performance
- Analytical models are, by definition, stateless
- Stochastical models/processes can form the bridge between the two
 - Many exist: random walks, gaussian processes, levy-processes...
 - and most importantly: Markov Processes/Chains
 - This is one of Giuliano's core research interests
- (I am using them when I have to)

(Discrete) Markov chains



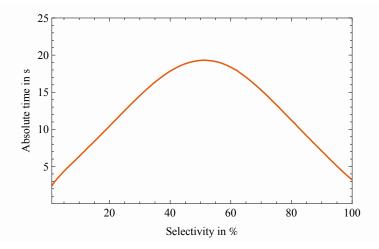
- · Basically a finite-state machine with transition probabilities
- They have "the Markov property": the next state is only dependent on the previous state and a random variable

Modeling code

A simple loop

```
extern int* input; // uniform random ints between 0 and 100
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {
        if(input[i] > s) {
            sum += input[i];
        }
}
```

Modeling code



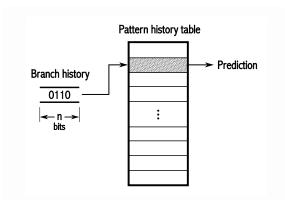
Modeling code

A simple loop

```
extern int* input; // uniform random data
int sum = 0;
for(size_t i = 0; i < inputSize; i++) {
        if(input[i] > 20) {
            sum += input[i];
        }
}
```

What is the branch misprediction rate?

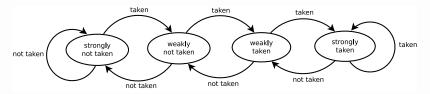
Branch predictors



Let's think about this in Markov terms

• Implemented in a *saturated counter*

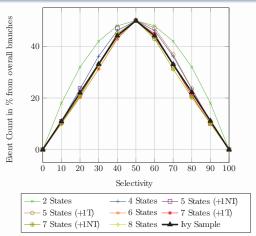
The solution



- Probability of the branch predictor predicting taken:
 - The probability of it being in one of the states on the right
 - We can calculate the probability of it being in any state as the **stationary distribution**
- Branch misprediction rate:
 - $(P(pred_taken) * P(act_not_taken)) + (P(pred_not_taken) * P(act_taken))$

Validation

Comparing stationary distribution with performance counter



Modeling the entire system

- Is usually infeasible due to scale and noise
- We need to apply modeling with care
- Step 1: identify parts of the code that matter for performance using a profiler
 - Hot code sections (vtune calls this "bottlenecks")
- Step 2: re-create their relevant behavior in a controlled environment
- Step 3: Model
- Step 4: Validate
- We will practise this in the next interactive session

Provide feedback, please!

https://co339.pages.doc.ic.ac.uk/feedback/modeling

Get the slides online

https://co339.pages.doc.ic.ac.uk/decks/PerformanceModeling.pdf